Antisense oligonucleotide against GSK-3β in brain of SAMP8 mice improves learning and memory and decreases oxidative stress: Involvement of transcription factor Nrf2 and implications for Alzheimer disease.

نویسندگان

  • Susan A Farr
  • Jessica L Ripley
  • Rukhsana Sultana
  • Zhaoshu Zhang
  • Michael L Niehoff
  • Thomas L Platt
  • M Paul Murphy
  • John E Morley
  • Vijaya Kumar
  • D Allan Butterfield
چکیده

Glycogen synthase kinase (GSK)-3β is a multifunctional protein that has been implicated in the pathological characteristics of Alzheimer's disease (AD), including the heightened levels of neurofibrillary tangles, amyloid-beta (Aβ), and neurodegeneration. In this study we used 12-month-old SAMP8 mice, an AD model, to examine the effects GSK-3β may cause regarding the cognitive impairment and oxidative stress associated with AD. To suppress the level of GSK-3β, SAMP8 mice were treated with an antisense oligonucleotide (GAO) directed at this kinase. We measured a decreased level of GSK-3β in the cortex of the mice, indicating the success of the antisense treatment. Learning and memory assessments of the SAMP8 mice were tested post-antisense treatment using an aversive T-maze and object recognition test, both of which observably improved. In cortex samples of the SAMP8 mice, decreased levels of protein carbonyl and protein-bound HNE were measured, indicating decreased oxidative stress. Nuclear factor erythroid-2-related factor 2 (Nrf2) is a transcription factor known to increase the level of many antioxidants, including glutathione-S transferase (GST), and is negatively regulated by the activity of GSK-3β. Our results indicated the increased nuclear localization of Nrf2 and level of GST, suggesting the increased activity of the transcription factor as a result of GSK-3β suppression, consistent with the decreased oxidative stress observed. Consistent with the improved learning and memory, and consistent with GSK-3b being a tau kinase, we observed decreased tau phosphorylation in brain of GAO-treated SAMP8 mice compared to that of RAO-treated SAMP8 mice. Lastly, we examined the ability of GAO to cross the blood-brain barrier and determined it to be possible. The results presented in this study demonstrate that reducing GSK-3 with a phosphorothionated antisense against GSK-3 improves learning and memory, reduces oxidative stress, possibly coincident with increased levels of the antioxidant transcriptional activity of Nrf2, and decreases tau phosphorylation. Our study supports the notion of GAO as a possible treatment for AD.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Antisense directed at the Abeta region of APP decreases brain oxidative markers in aged senescence accelerated mice.

Amyloid beta-peptide (Abeta) is known to induce free radical-mediated oxidative stress in the brain. Free radical-mediated damage to the neuronal membrane components has been implicated in the etiology of Alzheimer's disease (AD). Abeta is produced by proteolytic processing of the amyloid precursor protein (APP). The senescence accelerated mouse prone 8 (SAMP8) strain was developed by phenotypi...

متن کامل

Investigations into Modulation of Brain Oxidative Stress by Various Interventions

I represent that my thesis or dissertation and abstract are my original work. Proper attribution has been given to all outside sources. I understand that I am solely responsible for obtaining any needed copyright permissions. I have obtained and attached hereto needed written permission statements(s) from the owner(s) of each third-party copyrighted matter to be included in my work, allowing el...

متن کامل

Targeting Glycogen Synthase Kinase-3β for Therapeutic Benefit against Oxidative Stress in Alzheimer's Disease: Involvement of the Nrf2-ARE Pathway

Specific regions of the Alzheimer's disease (AD) brain are burdened with extracellular protein deposits, the accumulation of which is concomitant with a complex cascade of overlapping events. Many of these pathological processes produce oxidative stress. Under normal conditions, oxidative stress leads to the activation of defensive gene expression that promotes cell survival. At the forefront o...

متن کامل

Antisense directed against PS-1 gene decreases brain oxidative markers in aged senescence accelerated mice (SAMP8) and reverses learning and memory impairment: a proteomics study.

Amyloid β-peptide (Aβ) plays a central role in the pathophysiology of Alzheimer's disease (AD) through the induction of oxidative stress. This peptide is produced by proteolytic cleavage of amyloid precursor protein (APP) by the action of β- and γ-secretases. Previous studies demonstrated that reduction of Aβ, using an antisense oligonucleotide (AO) directed against the Aβ region of APP, reduce...

متن کامل

Proteomic identification of less oxidized brain proteins in aged senescence-accelerated mice following administration of antisense oligonucleotide directed at the Ah region of amyloid precursor protein

Amyloid h-peptide (Ah) is the major constituent of senile plaques, a pathological hallmark of Alzheimer’s disease (AD) brain. It is generally accepted that Ah plays a central role in the pathophysiology of AD. Ah is released from cells under entirely normal cellular conditions during the internalization and endosomal processing of amyloid precursor protein (APP). However, accumulation of Ah can...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Free radical biology & medicine

دوره 67  شماره 

صفحات  -

تاریخ انتشار 2014